
Package: QuantumOps (via r-universe)
August 27, 2024

Title Performs Common Linear Algebra Operations Used in Quantum
Computing and Implements Quantum Algorithms

Version 3.0.1

Date 2020-02-01

Author Salonik Resch

Maintainer Salonik Resch <resc0059@umn.edu>

Description Contains basic structures and operations used frequently
in quantum computing. Intended to be a convenient tool to help
learn quantum mechanics and algorithms. Can create arbitrarily
sized kets and bras and implements quantum gates, inner
products, and tensor products. Creates arbitrarily controlled
versions of all gates and can simulate complete or partial
measurements of kets. Has functionality to convert functions
into equivalent quantum gates and model quantum noise. Includes
larger applications, such as Steane error correction
<DOI:10.1103/physrevlett.77.793>, Quantum Fourier Transform and
Shor's algorithm (Shor 1999), Grover's algorithm (1996),
Quantum Approximation Optimization Algorithm (QAOA) (Farhi,
Goldstone, and Gutmann 2014) <arXiv:1411.4028>, and a
variational quantum classifier (Schuld 2018)
<arXiv:1804.00633>. Can be used with the gridsynth algorithm
<arXiv:1212.6253> to perform decomposition into the Clifford+T
set.

Depends R (>= 3.1.0)

License GPL-3

RoxygenNote 5.0.1

NeedsCompilation no

Date/Publication 2020-02-03 09:20:18 UTC

Repository https://resc0059.r-universe.dev

RemoteUrl https://github.com/cran/QuantumOps

RemoteRef HEAD

RemoteSha 35e2a8be5a6bbefbdc53a732eb6145a04dcd9e8e

1

https://doi.org/10.1103/physrevlett.77.793
https://arxiv.org/abs/1411.4028
https://arxiv.org/abs/1804.00633
https://arxiv.org/abs/1212.6253

2 Contents

Contents
addmod2 . 3
adjoint . 4
AmplitudeDamping . 5
BELL . 5
bra . 6
CFA . 6
checkCases . 7
cntrld . 7
CoherentNoise . 8
colv . 9
compareQuantumState . 9
controlled . 10
convert_bin2dec . 11
convert_dec2bin . 11
convert_ket2DM . 12
CX . 12
CY . 13
CZ . 13
DecomposeGate . 14
dirac . 15
dist . 15
dotmod2 . 16
exponentialMod . 16
extractMNIST . 17
FullAdder . 18
G . 18
gcd . 19
GroverDiffusion . 20
GroverOracle . 20
GroversAlgorithm . 21
H . 22
hermitian . 22
I . 23
inner . 23
intket . 24
ket . 24
many . 25
measure . 26
mm . 26
nBitAddition . 27
norm . 28
opDM . 28
PauliNoise . 29
PauliOperators . 29
PhaseDamping . 30
plotprobs . 31

addmod2 3

pp . 31
probs . 32
QAOA . 32
QAOA_example . 33
QAOA_maxcut . 34
QFT . 35
QuantumClassifier . 36
QuantumMNIST256Classifier . 38
R . 39
randomConnectionMatrix . 40
RandomizeCompile . 40
ranket . 41
reduceMeasure . 42
repeatTensor . 42
Rx . 43
Ry . 44
Rz . 44
S . 45
Shor . 45
single . 46
singleSWAP . 47
Steane . 47
SteaneCorrect . 48
SWAP . 49
swapTest . 49
SynthesizeCircuit . 50
T . 51
teleport . 51
tensor . 52
testGate . 52
TOFFOLI . 53
U . 54
Uf . 54
unitary . 55
X . 56
Y . 56
Z . 57

Index 58

addmod2 addmod2

Description

Takes two integers and adds their bits modulus two. The resulting string of bits represents an integer,
that value of which is the output.

4 adjoint

Usage

addmod2(x,a)

Arguments

x integer

a integer

Value

Integer resulting from the bit-wise addition of two number modulus 2

Examples

addmod2(5,5)
addmod2(1,2)

adjoint adjoint

Description

Finds the adjoint of the input. An input ket will become a bra and input bra will become a ket

Usage

adjoint(x)

Arguments

x A ket (column vector), bra (row vecor), or gate (matrix)

Value

The adjoint of x

Examples

adjoint(ket(1,5))

AmplitudeDamping 5

AmplitudeDamping AmplitudeDamping

Description

Implements Amplitude Damping noise model on the input quantum state. Formulas taken from
<DOI:10.1103/PhysRevA.90.062320>.

Usage

AmplitudeDamping(p,Pad)

Arguments

p Input quantum state, in density matrix format

Pad The probability of Amplitude Damping. Commonly referred to as gamma in the
literature.

Value

The quantum state, after Amplitude Damping has been applied.

Examples

AmplitudeDamping(p=convert_ket2DM(ket(1,0)),Pad=0.01)

BELL BELL

Description

If no argument is supplied, returns the matrix of BELL gate. If ket given as input, applies a BELL
gate to the input ket and returns the resulting ket

Usage

BELL(...)

Arguments

... No argument, or 4 dimensional (2 qubit) ket (column vector) that is input to the
gate

Value

Matix of the BELL gate or ket after a BELL gate is applied

6 CFA

Examples

BELL(ket(1,1,1,1))
BELL()

bra bra

Description

Returns a normalized bra (row vector)

Usage

bra(...)

Arguments

... Variable number of numbers representing the amplitudes of the bra

Value

Row vector containing normalized amplitudes of a bra

Examples

bra(1,0,1,2)

CFA CFA

Description

Performs the continued fractions algorithm to find a fraction close to input value

Usage

CFA(y,epsilon=1e-2)

Arguments

y Value that function attempts to find. Typically comes from measurement of
Shor’s algorithm

epsilon Acceptable error between value and fraction

Value

Vector containing numerator and denominator of fraction

checkCases 7

Examples

CFA(285/14)

checkCases checkCases

Description

Takes in a matrix of clauses and determines what percentage of the clauses each possible value
satisfies.

Usage

checkCases(clauses,colorCode=FALSE)

Arguments

clauses Matrix that specifies the clauses. Each row is a clause. Each row must contain
the same number of columns as qubits, the bit length of the clauses. 0 and 1 are
values which are added to clause, ignored bits should be set to any other value.

colorCode Boolean which specifies if data should be returned as list of colors rather than
numerical data

Value

Array of numbers or string color names

Examples

checkCases(rbind(c(1,-1),c(1,1)))

cntrld cntrld

Description

Creates a matrix representing a controlled gate on a system of qubits. The target and control qubits
can be located at arbitrarying positions.

Usage

cntrld(gate,n,...)

8 CoherentNoise

Arguments

gate single qubit gate to create controlled version of

n Number of qubits in the ket, including target, control, and all other qubits

... List of qubits. The last qubit in the list is the target. Any others listed before it
are control qubits. Can be any number between 1 and n-1 control qubits, where
n is the number of qubits in the ket. Qubits are indexed from 0, starting at the
most significant qubit

Value

A matrix representing the operation of a controlled qubit gate on any subset of the input ket

Examples

cntrld(X(),2,0,1)
cntrld(X(),2,1,0)
cntrld(Y(),4,2,3)
cntrld(X(),8,0,5)

CoherentNoise CoherentNoise

Description

Implements a model of coherent noise as used in <DOI:10.1038/s41534-018-0106-y>. It rotates
each qubit around the z-axis by the specified amount. If randomRoation is set, it will rotate around
the X, Y, or Z axis, which is chosen at random. Randomizing provides interesting side effects but
is less representative of quantum noise.

Usage

CoherentNoise(p,theta,randomRotation=FALSE)

Arguments

p Input quantum state in density matrix format

theta Angle of rotation to apply

randomRotation Boolean specifying whether the rotation should be in a semi-random direction

Value

The quantum state in density matrix format after noise has been applied

Examples

CoherentNoise(p= convert_ket2DM(ket(1,1,1,1)),theta=0.06*pi)

colv 9

colv colv

Description

Returns a column vector

Usage

colv(...)

Arguments

... Variable number of numbers representing the values in the column vector

Value

Column vector containing input arguments

Examples

colv(1,0,1,2)

compareQuantumState compareQuantumState

Description

Generates a matrix (quantum oracle) which will flip the last qubit in a quantum state if the qubits at
indices in vectors a and b are the same

Usage

compareQuantumState(nQubits,a,b)

Arguments

nQubits Number of qubits in a target ket. Should contain at least enough for states a and
b and an additional last qubit.

a Vector of indices of first state to compare in a target ket

b Vector of indices of second state to compare in a target ket

Value

Matrix of the compareQuantumState oracle

10 controlled

Examples

compareQuantumState(5,0:1,2:3)

controlled controlled

Description

Creates a matrix representing a controlled gate on a system of qubits. The target and control qubits
can be located at arbitrary positions.

Usage

controlled(gate,n,cQubits,tQubit)

Arguments

gate single qubit gate to create controlled version of

n Number of qubits in the ket, including target, control, and all other qubits

cQubits Vector of qubit indices. There can be between 1 and n-1 control qubits, where
n is the number of qubits in the ket. Qubits are indexed from 0, starting at the
most significant qubit

tQubit Index of the target qubit. Qubits are indexed from 0, starting at the most signifi-
cant qubit

Value

A matrix representing the operation of a controlled qubit gate on any subset of the input ket

Examples

controlled(X(),n=2,cQubits=0,tQubit=1)
controlled(X(),n=4,cQubits=c(0,1,2),tQubit=3)

convert_bin2dec 11

convert_bin2dec convert_bin2dec

Description

Takes a vector of unsigned bits with MSB first and produces integer value

Usage

convert_bin2dec(b)

Arguments

b Vector of bits with most significant bits first

Value

Integer value of bits

Examples

convert_bin2dec(c(1,0,0))

convert_dec2bin convert_dec2bin

Description

Takes an integer and returns an unsigned vector bits representing the same value

Usage

convert_dec2bin(x,len=32)

Arguments

x Integer
len Number of bits to represent integer with. Will crop most significant bits if in-

sufficient length.

Value

Vector of bits with MSB first

Examples

convert_dec2bin(10)
convert_dec2bin(10,8)

12 CX

convert_ket2DM convert_ket2DM

Description

Converts a ket (pure) description of quantum state and creates a density matrix representation of the
same state. Density matrices can represent both pure and mixed states.

Usage

convert_ket2DM(v)

Arguments

v An input ket

Value

Density matrix representing same state as input ket

Examples

convert_ket2DM(ket(1,0))

CX CX

Description

If no argument is supplied, returns the matrix of Controlled-X gate. If ket given as input, applies a
Controlled-X gate to the input ket and returns the resulting ket

Usage

CX(...)

Arguments

... No argument, or 4 dimensional (2 qubit) ket (column vector) that is input to the
gate

Value

Matix of the Controlled-X gate or ket after a Controlled-X gate is applied

Examples

CX(ket(1,1,1,1))
CX()

CY 13

CY CY

Description

If no argument is supplied, returns the matrix of Controlled-Y gate. If ket given as input, applies a
Controlled-Y gate to the input ket and returns the resulting ket

Usage

CY(...)

Arguments

... No argument, or 4 dimensional (2 qubit) ket (column vector) that is input to the
gate

Value

Matix of the Controlled-Y gate or ket after a Controlled-Y gate is applied

Examples

CY(ket(1,1,1,1))
CY()

CZ CZ

Description

If no argument is supplied, returns the matrix of Controlled-Z gate. If ket given as input, applies a
Controlled-Z gate to the input ket and returns the resulting ket

Usage

CZ(...)

Arguments

... No argument, or 4 dimensional (2 qubit) ket (column vector) that is input to the
gate

Value

Matix of the Controlled-Z gate or ket after a Controlled-Z gate is applied

14 DecomposeGate

Examples

CZ(ket(1,1,1,1))
CZ()

DecomposeGate DecomposeGate

Description

Uses the gridsynth algorithm Sellinger 2012 <arXiv:1212.6253>, which is available at https://www.mathstat.dal.ca/~selinger/newsynth/,
to decompose arbitrary gates to the Clifford+T set. For decomposition of controlled 2-qubit gates,
circuits from Amy 2013 <DOI:10.1109/TCAD.2013.2244643> are also used.

Usage

DecomposeGate(path,g,TwoQubit=FALSE,n=1,tQubit=0,cQubit=1,prec=10)

Arguments

path String of path to folder containing gridsynth binary (not including gridsynths
file name). R must have permission to read and write from this folder, and to
execute the binary.

g If a single number, this is the Z-rotation angle to approximate. If a vector of
length 3, it is the alpha, beta, and gamma parameters as defined in Schuld 2018
<arXiv:1804.00633>.

TwoQubit Boolean specifying whether this is a single or controlled 2-qubit gate

n The total number of qubits in the system. If TwoQubit is TRUE, the returned
circuit will have n+1 qubits due to the requirement of an ancilla qubit.

tQubit The target qubit. If a single qubit gate, the gate is applied to this qubit. If a
2-qubit gate, this is the target qubit.

cQubit Control qubit if a 2-qubit gate. Value does not matter for single qubit gate.

prec The binary precision of the approximation, which is passed to the gridsynth
binary.

Value

List of cycles which approximates the input gate.

Examples

Not run:
DecomposeGate(path="./",g=pi/5,TwoQubit=TRUE,n=3,tQubit=0,cQubit=1,prec=3)

End(Not run)

dirac 15

dirac dirac

Description

Prints the dirac notation of the input ket

Usage

dirac(ket)

Arguments

ket Ket (column vector) to print dirac notation of

Value

String of dirac notation

Examples

dirac(ket(1,0,1,0))

dist dist

Description

Reports the distance between two vectors/kets

Usage

dist(a,b)

Arguments

a column vector

b column vector

Value

Distance between two vectors

Examples

dist(ket(1,1,1,1),ket(1,0,0,1))

16 exponentialMod

dotmod2 dotmod2

Description

Takes two integers and takes the dot product of their binary representations. Output is the value of
the dot product, modulus 2

Usage

dotmod2(x,a)

Arguments

x integer

a integer

Value

Binary value resulting from the bit-wise dot product modulus 2

Examples

dotmod2(5,5)
dotmod2(1,2)
dotmod2(0,1)

exponentialMod exponentialMod

Description

Creates a function that raises a number to a power modulus another number. Is a fix for information
loss due to extremely large numbers. It takes the modulus for every multiplication

Usage

exponentialMod(a,N)

Arguments

a random number that is used as input to Shor’s algorithm

N Number that Shor’s algorithm is to factor

Value

A function that takes argument x and returns a^x modulus N

extractMNIST 17

Examples

exponentialMod(8,21)
exponentialMod(2,15)

extractMNIST extractMNIST

Description

Opens the MNIST training data and label files (not provided with package) and extracts the images
and labels and returns them in a list

Usage

extractMNIST(data,labels,s,centercrop=TRUE)

Arguments

data String of path to file containing MNIST training images

labels String of path to file containing MNIST training labels

s Number of samples and labels to extract from file

centercrop Boolean indicating whether the images should be centercropped to contain only
256 points

Value

List containing matrix of image data and array of training labels

Examples

Not run:
extractMNIST("train-images.idx3-ubyte","train-labels.idx1-ubyte",2)

End(Not run)

18 G

FullAdder FullAdder

Description

Provides the quantum operatios for a full-adder with the specified input and output indices. Uses the
circuit developed by Cheng and Tseng <DOI:10.1049/el:20020949>. Uses CNOT and TOFFOLI
gates, with the TOFFOLI gates being broken down into H, T, and CNOT gates. The SUM (qu)bit
gets places where the b operand (qu)bit is.

Usage

FullAdder(n=4,cin=0,a=1,b=2,cout=3)

Arguments

n Number of qubits in input quantum state

cin index of the carry in (qu)bit

a Index of the first operand (qu)bit

b Index of the second operand (qu)bit

cout Index where the output carry (qu)bit will be placed

Value

A list with elements containing the quantum operations (matrices) for the full adder in each cycle.

Examples

FullAdder(n=4,cin=0,a=1,b=2,cout=3)

G G

Description

Creates quantum gate defined by 4 angles as demonstrated by Barenco (1995). If no argument is
supplied, returns the matrix of G gate. If ket given as input, applies an G gate to the input ket and
returns the resulting ket

Usage

G(a,b,g,p=0,...)

gcd 19

Arguments

a First angle

b second angle

g third angle

p global phase

... No argument, or ket (column vector) that is input to the gate

Value

Matrix of the G gate or ket after an G gate is applied

Examples

G(0,0,0,0,ket(1,0))
G(1,1,1)

gcd gcd

Description

Finds the gcd

Usage

gcd(x,y)

Arguments

x First argument

y Second argument

Value

The greated common divisor of x and y

Examples

gcd(7,3)
gcd(10,4)

20 GroverOracle

GroverDiffusion GroverDiffusion

Description

If integer is input, returns the matrix of Grover Diffusion operation on the integer number of qubits.
If ket given as input, applies a Grover Diffusion operation to the input ket and returns the resulting
ket

Usage

GroverDiffusion(input)

Arguments

input Either integer specifying size of operation (in number of qubits it is applied to)
or input ket to apply Grover Diffusion to

Value

Either the matrix of the Grover Diffusion gate of the specified size or ket after a Grover Diffusion
operation is applied

Examples

GroverDiffusion(ket(1,1,1,1,1,1,1,1))
GroverDiffusion(3)

GroverOracle GroverOracle

Description

If integer is input, returns the matrix of GroverOracle operation on the integer number of qubits. If
ket given as input, applies a GroverOracle operation to the input ket and returns the resulting ket

Usage

GroverOracle(w,input)

Arguments

w Integer specifying the state to search for, between 0 and 2^n-1 where n is the
number of qubits

input Either integer specifying size of operation (in number of qubits it is applied to)
or input ket to apply GroverOracle to

GroversAlgorithm 21

Value

Either the matrix of the GroverOracle gate of the specified size or ket after a GroverOracle operation
is applied

Examples

GroverOracle(0,ket(1,1,1,1,1,1,1,1))
GroverOracle(0,3)

GroversAlgorithm GroversAlgorithm

Description

Applies Grover’s search algorithm to a uniform ket to simulate a quantum search

Usage

GroversAlgorithm(n,w,iterations=n,printOutput=FALSE,plotOutput=FALSE,tag="")

Arguments

n Number of qubits in the problem, not counting the extra ancillary qubit

w Integer specifying the state to search for, between 0 and 2^n-1 where n is the
number of qubits

iterations Number of iterations to apply the oracle and diffusion, optimal is approximately
n

printOutput Boolean specifying if the measurement probabilities should be printed as search
progresses

plotOutput Boolean specifying if the output probabilities should be plotted to a graph

tag String which is attached to output file name if plotOutput is TRUE

Value

Ket after a Grover search has been applied to it

Examples

GroversAlgorithm(7,0,14)
GroversAlgorithm(7,0,14,printOutput=TRUE)

22 hermitian

H H

Description

If no argument is supplied, returns the matrix of H gate. If ket given as input, applies an H gate to
the input ket and returns the resulting ket

Usage

H(...)

Arguments

... No argument, or ket (column vector) that is input to the gate

Value

Matix of the H gate or ket after a Hgate is applied

Examples

H(ket(1,0))
H()

hermitian hermitian

Description

Determines whether an operation (matrix) is hermitian by comparing it to its adjoint

Usage

hermitian(m)

Arguments

m gate operation (gate) that is to be checked

Value

boolean indicating whether matrix is hermitian or not

Examples

hermitian(matrix(c(0,1,1,0),nrow=2))

I 23

I I

Description

If no argument is supplied, returns the matrix of I gate. If ket given as input, applies an I gate to the
input ket and returns the resulting ket

Usage

I(...)

Arguments

... No argument, or ket (column vector) that is input to the gate

Value

Matix of the I gate or ket after an I gate is applied

Examples

I(ket(1,0))
I()

inner inner

Description

Finds the inner product of two kets, <w|v>. w and v can be the same

Usage

inner(w,v)

Arguments

w ket (column vector) that is the left side of the innter product, converted to a bra
before the dot product

v ket (column vector) that is the right side of the inner product

Value

Value of the inner product

Examples

inner(ket(1,0),ket(1,1))

24 ket

intket intket

Description

Returns a ket (column vector) that has the encoded value of the specified integers. Implements what
is commonly known as basis encoding. Does not simulate the state creation.

Usage

intket(x,n,amplitudes=rep(1,length(x)))

Arguments

x Integer, or vector of integers, specifying the integer encoded state(s) of the ket

n Integer specifying the number of qubits in the ket

amplitudes Integer, or vector of integers, specifying the amplitudes for corresponding basis
in x. Must be same length as x. Only relative values matter as the ket will be
normalized. Default is for all states to have same amplitude.

Value

Column vector containing normalized amplitudes of a ket

Examples

intket(0,1)
intket(3,2)
intket(4,3)
intket(c(0,1), 4)
intket(c(0,2), 4 , c(1,2))

ket ket

Description

Returns a normalized ket (column vector)

Usage

ket(...)

Arguments

... Variable number of numbers representing the amplitudes of the ket

many 25

Value

Column vector containing normalized amplitudes of a ket

Examples

ket(1,0,1,2)

many many

Description

Takes as input a gate and generates the matrix for that gate being applied to multiple qubits by
creating a tensor product of the matrix. If a ket is supplied, the matrix will be applied to the ket

Usage

many(gate,n,...)

Arguments

gate Single qubit gate to apply

n Number of qubits that the gate will be applied to

... Either no argument or a ket that the gates will be applied to

Value

The matrix representing the application of many gates or a ket after the gates have been applied

Examples

many(H(),4)
many(X(),2,ket(1,0,0,0))

26 mm

measure measure

Description

Probabilistically measures the input ket. By default measures all qubits, but if a list of integers
is supplied it will measure only those qubits. Returns a list containing the state of the ket after
measurement along with integer value of the state that was measured. Additionally, returns a vector
of the measured binary values, if a list of qubits to measure was specified.

Usage

measure(...,l2r=FALSE)

Arguments

... The input ket to measure. Optionally followed by integers specifying which
qubits of the ket to measure. Qubits indexed from 0 from right to left

l2r Boolean which specifices if indexing should be performed from left to right.
Is FALSE by default to maintain backwards compatibility, however all other
functions index from left to right.

Value

A list with the first item a column vector containing normalized amplitudes of the measured ket and
the second item the integer value of the state which was measured. If a list of qubits to measure
was specified as an argument, there is a 3rd item in the list which is a vector of the binary measured
values.

Examples

measure(ket(1,0),l2r=TRUE)
measure(ket(1,2,2,1),0,l2r=TRUE)
measure(ket(1,2,3,4,5,6,7,8),0,l2r=TRUE)
measure(ket(1,2,3,4,5,6,7,8),0,1,l2r=TRUE)
measure(ket(1,2,3,4,5,6,7,8),0,1,2,l2r=TRUE)

mm mm

Description

Returns a matrix containing the specified elements. Values are input column-wise. Used for conve-
nient shorthand creation of matrices

nBitAddition 27

Usage

mm(...)

Arguments

... Variable number of numbers representing the values in the matrix

Value

Matrix containing the values of the inputs

Examples

mm(1,0,1,2)

nBitAddition nBitAddition

Description

Strings together output from FullAdder function to create multi-(qu)bit addition. It assumes the
input operands are laid out as in <DOI:10.1049/el:20020949>. From left to right (top to bottom)
the order is C0, a1, b1, C1, a2, b2, C2, bn-1, Cn. There must be 3n+1 qubits in order to perform
n-(qu)bit addition.

Usage

nBitAddition(n)

Arguments

n Length of input (qu)bit strings.

Value

A list containing the quantum circuit (each elemented is one cycle of the circuit) performing n-bit
addition.

Examples

Not run:
nBitAddition(2)

End(Not run)

28 opDM

norm norm

Description

Finds the norm of input column vector by taking the inner product with itself

Usage

norm(v)

Arguments

v kcolumn vector

Value

Norm of the input column vector

Examples

norm(ket(1,0))

opDM opDM

Description

Applies a quantum operation to a density matrix

Usage

opDM(V,G)

Arguments

V Input density matrix

G Quantum operation to apply to density matrix

Value

A density matrix which has been modofied by the input quantum operation

Examples

opDM(V=convert_ket2DM(ket(1,0)) , G=X())

PauliNoise 29

PauliNoise PauliNoise

Description

Applies stochastic Pauli noise to an input quantum state. If only e is set, it is equally distributed to
X, Y, and Z error which is an isotropic Pauli noise model. Otherwise, levels can be set seperately
for each.

Usage

PauliNoise(p,e=ex+ey+ez,ex=e/3,ey=e/3,ez=e/3)

Arguments

p Input quantum state, in density matrix format

e Total amount of noise to apply the state, is the sum of ex, ey, and ez

ex Amount of X noise to apply to the state

ey Amount of Y noise to apply to the state

ez Amount of Z noise to apply to the state

Value

The quantum state in density matrix format, after Pauli noise has been applied to it

Examples

PauliNoise(p=convert_ket2DM(ket(1,0)) , e=0.01)

PauliOperators PauliOperators

Description

Generates random Pauli operators (tensor products of random I,X,Y,or Z gates applied to each qubit)
that can be applied to register of n qubits. Used with Randomized Compiling, where random Pauli
gates are applied to each qubit.

Usage

PauliOperators(n,m=4^n,unique=TRUE)

30 PhaseDamping

Arguments

n Size of the Pauli operators to generate, should be equal to the number of target
qubits

m Number of different Pauli operators to generate

unique Boolean indicating if each Pauli operator generated should be unqiue. Must be
false is m > 4^n

Value

A list of m Pauli operators of size n

Examples

PauliOperators(n=2,m=2,unique=FALSE)

PhaseDamping PhaseDamping

Description

Implements Phase Damping noise model on the input quantum state. Formulas taken from <DOI:10.1103/PhysRevA.90.062320>.

Usage

PhaseDamping(p,Ppd)

Arguments

p Input quantum state, in density matrix format

Ppd The probability of phase Damping.

Value

The quantum state, after Phase Damping has been applied.

Examples

PhaseDamping(p=convert_ket2DM(ket(1,0)),Ppd=0.01)

plotprobs 31

plotprobs plotprobs

Description

Plots the probabilities of each of the amplitudes of ket in a barplot

Usage

plotprobs(v,color=rep("Blue",length(v)),customLegend=FALSE,lgNm="",lgCl="")

Arguments

v ket that is to be plotted

color Text, possibly an array, specifying the colors of the bars

customLegend Boolean specifying if a custom legend should be inserted

lgNm Vector of legend names

lgCl Vector of legend colors

Value

A plot

Examples

plotprobs(ket(1,0,1,0),color=c("Red","Blue","Red","Blue"))

pp pp

Description

Prints a pasted string containing all arguments. Short hand for print(paste(...))

Usage

pp(...)

Arguments

... Variable number of inputs to be printed

Value

Prints string

32 QAOA

Examples

pp("Value is",1,0,1,2)

probs probs

Description

Returns a column vector containing the probabilities of measuring the system in each state

Usage

probs(ket)

Arguments

ket ket (column vector) that is input to the gate

Value

Column vector containing probabilities

Examples

probs(ket(1,1))

QAOA QAOA

Description

Implements a clause-based version of Quantum Approximation Optimization Algorithm (Farhi,
Goldstone, and Gutmann 2014) <arXiv:1411.4028>. Takes as input a set of clauses and performs
Controlled-Phase and Rx gates to perform optimization. See "An Introduction to Quantum Opti-
mization Approximation Algorithm" (Wang and Abdullah 2018) for explanation.

Usage

QAOA(clauses,p=1,gamma=pi/p,beta=pi/(2*p),displayProgress=FALSE,byCycle=FALSE)

QAOA_example 33

Arguments

clauses Matrix that specifies the clauses. Each row is a clause. Each row must contain
the same number of columns as qubits, the bit length of the clauses. 0 and 1 are
values which are added to clause, ignored bits should be set to any other value.

p Number of iterations that algorithm will run. Each iteration applies U(C,g) and
U(B,b)

gamma Angle for U(C,g), currently the same for all iterations. Should be between 0 and
2*pi

beta Angle for U(B,b), currently the same for all iterations. Should be between 0 and
pi

displayProgress

Boolean which specifies if progress should be shown. If TRUE, a bar plot is
continually updated showing the amplitudes

byCycle Boolean which specifies if function should return the circuit. If TRUE, rather
than performing the algorithm it will generate and return the equivalent circuit.

Value

Ket after algorithm is applied

Examples

QAOA(rbind(c(0,0),c(0,1)))

QAOA_example QAOA_example

Description

Runs an example of QAOA

Usage

QAOA_example(case=1)

Arguments

case Integer specifying case to demonstrate. Currently only two, 1 (small) and 2
(medium)

Value

No value

34 QAOA_maxcut

Examples

Not run:
QAOA_example(1)
QAOA_example(2)

End(Not run)

QAOA_maxcut QAOA_maxcut

Description

Takes a connection matrix as input and converts it to a set of clauses, then runs the Quantum Ap-
proximation Optimization Algorithm (Farhi, Goldstone, and Gutmann 2014) <arXiv:1411.4028>.

Usage

QAOA_maxcut(connectionMatrix,p=1,gamma=pi/p,beta=pi/(2*p),displayProgress=FALSE)

Arguments

connectionMatrix

Matrix that specifies the edges between nodes. Rows are source nodes and
columns are destination nodes. Value of 0 means no edge, value of 1 means
edge. If edge is undirected, an edge should be specified going both directions.

p Number of iterations that algorithm will run. Each iteration applies U(C,g) and
U(B,b)

gamma Angle for U(C,g), currently the same for all iterations. Should be between 0 and
2*pi

beta Angle for U(B,b), currently the same for all iterations. Should be between 0 and
pi

displayProgress

Boolean which specifies if progress should be shown. If TRUE, a bar plot is
continually updated showing the amplitudes

Value

Ket after algorithm is applied

Examples

QAOA_maxcut(randomConnectionMatrix(4,2),p=5)

QFT 35

QFT QFT

Description

If integer is input, returns the matrix of QFT operation on the integer number of qubits. If ket given
as input, applies a QFT operation to the input ket and returns the resulting ket. If byCycle is TRUE,
it generated the circuit for the QFT and returns a list of the cycles.

Usage

QFT(input,byCycle=FALSE,swaps=TRUE,CliffordT=FALSE,prec=10,path="./")

Arguments

input Either integer specifying size of operation (in number of qubits it is applied to)
or input ket to apply QFT to

byCycle Boolean which specifies whether the circuit should be generated or not. If
TRUE, rather than returning the matrix or performing the algorithm, the function
will generate and return the equivalent circuit.

swaps Boolean which specifies if the the SWAP gates required at the end of the QFT
should be inserted. May not be necessary if qubit reordering is acceptable. Only
valid if byCycle is TRUE.

CliffordT Boolean which specifies if the generated circuit should be decomposed into the
Clifford+T set. Only valid if byCycle is TRUE.

prec The precision of the decomposition into the Clifford+T set. Only valid if byCy-
cle and CliffordT are both TRUE.

path Path from current working directory to the gridsynth binary. Only used if Clif-
fordT is set to TRUE. The gridsynth binary is not contained in QuantumOps but
available from https://www.mathstat.dal.ca/~selinger/newsynth/

Value

If the input is an integer, the matrix of the QFT gate of the specified size. If the input is a ket, the
ket after a QFT operation is applied. If byCycle is TRUE, a list of the cycles of the algorithm.

Examples

QFT(ket(1,0))
QFT(ket(1,0,0,1))
QFT(3)

36 QuantumClassifier

QuantumClassifier QuantumClassifier

Description

Quantum classifier which was proposed by Maria Schuld (2018). Consists of code blocks which
have parallel single qubit quantum gates followed by controlled qubit gates. Takes as input samples
and a corresponding list of labels indicating the correct output value of each sample. Will update
the parameters of the gates in order to correctly identify the samples.

Usage

QuantumClassifier(n=8,B=2,r=c(1,3),
data=NULL,labels=NULL,digit=0,
eta=1,decay=1,bsc=1,t=20,tag="",pl=TRUE,train=TRUE,
validT=FALSE,vdata=NULL,vlabels=NULL,
pretrained=FALSE,alpha=NULL,beta=NULL,gamma=NULL,bias=NULL,

writeParameters=FALSE,outputPath=NULL)

Arguments

n Number of qubits that this the classifier will use.

B Number of blocks in the circuit. A block consists of n single qubit gates ap-
plied to each of the qubits in parallel and then n/(gcd,r) controlled qubit gates to
perform a maximal entanglement. r is the specified range of the controlled gates

r Vector containing the range for each block. length(r) should be equal to B. r of
1 means controlled gates are performed on adjacent qubits

data matrix containing input training data. Rows are individual samples. The number
of columns should be equal to 2^n

labels Vector containing labels of digits. Length must be the same as the number of
rows in data

digit Individual output to identify. The network will attempt to differentiate between
inputs that are labelled as digit (in the labels vector) and inputs that are labelled
as any other number

eta learning rate for parameter updates

decay Multiplier for learning rate after each training iteration. If set to less than 1, the
learning rate decays in time

bsc Scaler for the learning rate of the bias. Setting to a low value will result in other
parameters updating faster than the bias

t Number of training iterations to perform. Total runs is equal to this value multi-
plied by the number of samples provided

tag String to attach to name of output files

pl Boolean indicating whether training output should be plotted

QuantumClassifier 37

train Boolean specifying if network should trained on training data, only false if pass-
ing in pretrained model

validT Boolean specifying if the network should be tested on validation data while
being trained

vdata Validation data, necessary if validT is set to true in which case network is tested
on this data while being trained. Can be set to same as data.

vlabels Validation labels, necessary if validT is set to true in which case network is
tested on vdata while being trained. Can be set to same as labels.

pretrained Boolean specifying if a pretrained model is being passed in. If so, alpha, beta,
and gamme will be set to intputs, rather than randomized.

alpha alpha values for gates if pretrained is set to TRUE, should be a vector of length
equal to the number of gates in the circuit.

beta beta values for gates if pretrained is set to TRUE, should be a vector of length
equal to the number of gates in the circuit.

gamma gamma values for gates if pretrained is set to TRUE, should be a vector of length
equal to the number of gates in the circuit.

bias Bias applied to the output of the circuit.

writeParameters

Boolean specifying whether function should write the parameters as it trains.
Useful when training takes a long time.

outputPath String which specifies path to write output parameters to if writeParameters is
TRUE. Must have write priveleges in this directory. The function will create two
directories inside outputPath, named 0 and 1, and will alternate output to each
folder. This prevents corruption of output if interrupted.

Value

List containing a list of the 33 gates and the matrix representing the entire circuit of the trained
classifier

Examples

Not run:
QuantumClassifier(n=8,B=2,r=c(1,3),

matrix(sample(256,replace=TRUE),nrow=1),
array(1),0,1,1,.001,1,"test")

End(Not run)

38 QuantumMNIST256Classifier

QuantumMNIST256Classifier

QuantumMNIST256Classifier

Description

Quantum classifier which was proposed by Maria Schuld (2018). Consists of 33 quantum gates
with a depth of 19. Takes as input samples with dimensions of 256 and a corresponding list of
labels indicating the correct output value of each sample. Will update the parameters of the gates in
order to correctly identify one of the digits specified.

Usage

QuantumMNIST256Classifier(
data=NULL,labels=NULL,digit=0,
eta=1,decay=1,bsc=1,t=20,tag="",pl=TRUE,train=TRUE,
validT=FALSE,vdata=NULL,vlabels=NULL,
pretrained=FALSE,alpha=NULL,beta=NULL,gamma=NULL)

Arguments

data matrix containing input training data. Rows are individual samples. There must
be 256 columns

labels Vector containing labels of digits. Length must be the same as the number of
rows in data

digit Individual digit (0-9) to identify

eta learning rate for parameter updates

decay Multiplier for learning rate after each training iteration. If set to less than 1, the
learning rate decays in time

bsc Scaler for the learning rate of the bias. Setting to a low value will result in other
parameters updating faster than the bias

t Number of training iterations to perform. Total runs is equal to this value multi-
plied by the number of samples provided

tag String to attach to name of output files

pl Boolean indicating whether training output should be plotted

train Boolean specifying if network should trained on training data, only false if pass-
ing in pretrained model

validT Boolean specifying if the network should be tested on validation data while
being trained

vdata Validation data, necessary if validT is set to true in which case network is tested
on this data while being trained. Can be set to same as data.

vlabels Validation labels, necessary if validT is set to true in which case network is
tested on vdata while being trained. Can be set to same as labels.

R 39

pretrained Boolean specifying if a pretrained model is being passed in. If so, alpha, beta,
and gamme will be set to intputs, rather than randomized.

alpha alpha values for gates if pretrained is set to TRUE, should be a vector of length
33

beta beta values for gates if pretrained is set to TRUE, should be a vector of length
33

gamma gamma values for gates if pretrained is set to TRUE, should be a vector of length
33

Value

List containing a list of the 33 gates and the matrix representing the entire circuit of the trained
classifier

Examples

Not run:
QuantumMNIST256Classifier(matrix(sample(256,replace=TRUE),nrow=1),array(1),0,1,1,.001,1,"test")

End(Not run)

R R

Description

If no second argument is supplied, returns the matrix of an R phase gate of the specified radians. If
ket given as second argument, applies the R gate to the input ket and returns the resulting ket. Is
equivalent to the more recently added Rz function.

Usage

R(theta,...)

Arguments

theta Radians to phase rotate the ket

... No argument, or ket (column vector) that is input to the gate

Value

Matix of the R gate or ket after an R gate is applied

Examples

R(pi,ket(1,0))
R(pi)

40 RandomizeCompile

randomConnectionMatrix

randomConnectionMatrix

Description

Generates a connection matrix for a random undirected graph. Intended for input to QAOA_maxcut.

Usage

randomConnectionMatrix(nNodes,nEdges)

Arguments

nNodes Number of nodes in generated graph

nEdges Number of undirected edges in generated graph

Value

Connection Matrix specifying the edges of an undirected graph. Rows are source nodes, columns
are destination nodes.

Examples

randomConnectionMatrix(5,3)

RandomizeCompile RandomizeCompile

Description

Implements Randomized Compiling as described by Wallman and Emerson <DOI:10.1103/PhysRevA.94.052325>.
Takes as input a list of easy cycles and a list of hard cycles. In this context, a cycle is the application
of one operation to a register of qubits. Inserts randomizing Pauli gates after easy cycles, and cor-
rective operations before the next easy cycle. The randomizations are then combined with the easy
cycles. The first and last cycles are easy, with all other cycles alternating betweene asy and hard.
Hence, the number of easy cycles should be one more than the number of hard cycles. Easy cycles
(C) can be left unset, in which case Idle cycles will be inserted to enabled the randomizations.

Usage

RandomizeCompile(C=rep(list(
repeatTensor(I(),log(dim(G[[1]])[1],base=2))),
length(G)+1)

,G,combine=TRUE)

ranket 41

Arguments

C List of easy cycles

G List of hard cycles

combine Boolean specifying if the output should be combined into one list or left seperate

Value

If combine is TRUE, a list of cycles that are now Randomly Compiled. If combine is FALSE, a list
of two lists, the first being the Randomly Compiled easy cycles and the second the hard cycles.

Examples

RandomizeCompile(G=list(CX(), CX()))
RandomizeCompile(G=list(controlled(gate=Z(),n=3,cQubits=0,tQubit=1) ,

single(gate=H(),n=3,t=1)))

ranket ranket

Description

Generates a random ket by selecting random polar coordinates (theta,phi) for each. Approach taken
from <DOI:10.1103/PhysRevA.95.062338>.

Usage

ranket(n)

Arguments

n Number of qubits in generated get

Value

A ket with a randomized state

Examples

ranket(4)

42 repeatTensor

reduceMeasure reduceMeasure

Description

Probabilistically measures the input ket and reduces the size of ket by removing the measured qubits.
By default measures all qubits, but if a list of integers is supplied it will measure only those qubits.
Returns a list containing the state of the ket after measurement along with integer value of the state
that was measured. Additionally, returns a vector of the measured binary value if a list of qubits to
measure was specified.

Usage

reduceMeasure(...,l2r=FALSE)

Arguments

... The input ket to measure. Optionally followed by integers specifying which
qubits of the ket to measure. Qubits indexed from 0 from right to left

l2r Boolean which specifices if indexing should be performed from left to right.
Is FALSE by default to maintain backwards compatibility, however all other
functions index from left to right.

Value

A list with the first item a column vector containing normalized amplitudes of the measured ket and
the second item the integer value of the state which was measured. If a list of qubits to measure was
specified as an argument, there is a 3rd item in the list which is a vector of the binary measured

Examples

reduceMeasure(ket(1,0),l2r=TRUE)
reduceMeasure(ket(1,2,2,1),0,l2r=TRUE)
reduceMeasure(ket(1,2,3,4,5,6,7,8),0,l2r=TRUE)
reduceMeasure(ket(1,2,3,4,5,6,7,8),0,1,l2r=TRUE)
reduceMeasure(ket(1,2,3,4,5,6,7,8),0,1,2,l2r=TRUE)

repeatTensor repeatTensor

Description

Repeatedly tensors the input with itself

Usage

repeatTensor(g,n)

Rx 43

Arguments

g Object, typically a gate, that is to be tensored with itself

n Number of times to tensor g with itself

Value

The input g tensored by itself n times

Examples

repeatTensor(X(),2)
repeatTensor(X(),2)

Rx Rx

Description

If no second argument is supplied, returns the matrix of an Rx rotation gate of the specified radians.
If ket given as second argument, applies the Rx gate to the input ket and returns the resulting ket.

Usage

Rx(theta,...)

Arguments

theta Radians to phase rotate the ket around the x-axis

... No argument, or ket (column vector) that is input to the gate

Value

Matix of the Rx gate or ket after an Rz gate is applied

Examples

Rx(pi,ket(1,0))
Rx(pi)

44 Rz

Ry Ry

Description

If no second argument is supplied, returns the matrix of an Ry rotation gate of the specified radians.
If ket given as second argument, applies the Ry gate to the input ket and returns the resulting ket.

Usage

Ry(theta,...)

Arguments

theta Radians to phase rotate the ket around the y-axis

... No argument, or ket (column vector) that is input to the gate

Value

Matix of the Rz gate or ket after an Rz gate is applied

Examples

Ry(pi,ket(1,0))
Ry(pi)

Rz Rz

Description

If no second argument is supplied, returns the matrix of an Rz rotation gate of the specified radians.
If ket given as second argument, applies the Rz gate to the input ket and returns the resulting ket.

Usage

Rz(theta,...)

Arguments

theta Radians to phase rotate the ket around the z-axis

... No argument, or ket (column vector) that is input to the gate

Value

Matix of the Rz gate or ket after an Rz gate is applied

S 45

Examples

Rz(pi,ket(1,0))
Rz(pi)

S S

Description

If no argument is supplied, returns the matrix of S gate. If ket given as input, applies an S gate to
the input ket and returns the resulting ket

Usage

S(...)

Arguments

... No argument, or ket (column vector) that is input to the gate

Value

Matix of the S gate or ket after an S gate is applied

Examples

S(ket(1,1))
S()

Shor Shor

Description

Implements Shor’s algorithm by applying the quantum oracle, performing a QFT, measuring the
output, and using continued fractions algorithm to find period. Period is then used with Euclidean
algorithm to check if factors are legitimate prime factors. Is probabilistic and may fail. Factors 15
with ease and 21 occassionally.

Usage

Shor(N,trials=150,random=FALSE)

46 single

Arguments

N Number that Shor’s algorithm is to factor

trials Number of times to attempt before giving up

random Boolean which determines whether seed is random or not

Value

Vector containing prime factors

Examples

Shor(15,trials=2)

single single

Description

Takes as input a gate and generates the matrix for that gate being applied to a single qubit in a ket
by creating a tensor product of the matrix with Identity matrices. If a ket is supplied, the matrix will
be applied to the ket

Usage

single(gate,n,t,...)

Arguments

gate Single qubit gate to apply

n Number of qubits that are in the target ket

t Target qubit that the gate will be applied to, other qubits are unmodified. Indexed
from 0.

... Either no argument or a ket that the gate will be applied to

Value

The matrix representing the application of a single gate to one of the qubits in a ket or a ket after
the gate has been applied

Examples

single(H(),4,1)
single(H(),2,1,ket(1,0,0,0))
single(X(),2,0,ket(1,0,0,0))

singleSWAP 47

singleSWAP singleSWAP

Description

Implements the SWAP gate between two qubits, which can be in a larger ket. If no argument is
supplied, returns the matrix of the gate. If ket given as input, applies the gate to the input ket and
returns the resulting ket. In its default configuration it is the same as standard SWAP.

Usage

singleSWAP(nQubits=2,a=0,b=1,...)

Arguments

nQubits Number of qubits in target ket

a Index of first qubit to swap, indexed from 0

b Index of second qubit to swap, indexed from 0

... No argument, or ket (column vector) that is input to the gate

Value

Matrix of the singleSWAP gate or ket after an singleSWAP gate is applied

Examples

singleSWAP(2,0,1, ket(1,2,3,4))
singleSWAP(4,0,3, intket(c(1,5),4,c(1,2)))

Steane Steane

Description

Takes an unencoded single qubit ket and converts it to a 7-qubit Steane encoded ket

Usage

Steane(v)

Arguments

v Single qubit ket to Steane encode

48 SteaneCorrect

Value

Steane encoded ket containing 7 qubits

Examples

Steane(ket(1,0))
Steane(ket(0,1))
Steane(ket(1,1))

SteaneCorrect SteaneCorrect

Description

Performs Steane error correction on an encoded qubit. Useful explanation provided by Devitt
<DOI:10.1088/0034-4885/76/7/076001>

Usage

SteaneCorrect(v)

Arguments

v Steane encoded qubit ket

Value

Steane encoded ket after error correction has been performed

Examples

Not run:
SteaneCorrect(Steane(ket(1,0)))
SteaneCorrect(Steane(ket(0,1)))
SteaneCorrect(Steane(ket(1,1)))
SteaneCorrect(single(X(),n=7,t=2,Steane(ket(1,0))))

End(Not run)

SWAP 49

SWAP SWAP

Description

If no argument is supplied, returns the matrix of SWAP gate. If ket given as input, applies an SWAP
gate to the input ket and returns the resulting ket

Usage

SWAP(...)

Arguments

... No argument, or ket (column vector) that is input to the gate

Value

Matrix of the SWAP gate or ket after an SWAP gate is applied

Examples

SWAP(ket(0,1,0,0))
SWAP()

swapTest swapTest

Description

Encodes absolute square of inner product of two states, |<a|b>|^2, into an ancilliary qubit. It swaps
the states of |a> and |b> conditioned on the ancilla which results in a state where the probability
of measuring the ancilla qubit in the 0 state is equal to 1/2 - 1/2*(|<a|b>|^2). The ancilla qubit
is inserted before qubit index 0, as the most significant qubit. Full explanation can be found in
"Supervised Learning with Quantum Computers" <DOI:10.1007/978-3-319-96424-9>.

Usage

swapTest(v,a,b)

Arguments

v Ket (column vector) that swap test is applied to. Should be a tensor product of
two quantum state.

a Vector of indices of |a> within v

b Vector of indices of |b> within v

50 SynthesizeCircuit

Value

Ket which contains the modified input ket, v, along with a leading ancillary qubit.

Examples

swapTest(intket(3,4),a=0:1,b=2:3)
swapTest(intket(5,4),a=0:1,b=2:3)

SynthesizeCircuit SynthesizeCircuit

Description

Converts the list form of a quantum circuit into a matrix representation. If the input is a single list,
this function multiplies each entry. If each entry is a 4x4 unitary matrix, this function will multiply
all, starting with the first, and generate a single 4x4 unitary matrix. If the input is a list of lists,
this function will perform the same operation but interleave each list. The lists can be of different
lengths.

Usage

SynthesizeCircuit(l)

Arguments

l list containing the quantum operators of each cycle. The quantum operators
should be unitary matrices which act on a number of qubits. Each entry in l
should be of the same dimension. Optionally, l can be a of such lists, in which
case each list will be interleaved.

Value

A matrix representing the result of applying each operation listed in l

Examples

Not run:
SynthesizeCircuit(list(tensor(X(),X()) , tensor(Y(),X()),

tensor(I(),X()) , tensor(Z(),Z())))

End(Not run)
Not run:
SynthesizeCircuit(list(list(tensor(X(),X()) , tensor(I(),X())),
list(tensor(Y(),X()) , tensor(Z(),Z()))))

End(Not run)

T 51

T T

Description

If no argument is supplied, returns the matrix of T gate. If ket given as input, applies a T gate to the
input ket and returns the resulting ket

Usage

T(...)

Arguments

... No argument, or ket (column vector) that is input to the gate

Value

Matix of the T gate or ket after an T gate is applied

Examples

T(ket(1,1))
T()

teleport teleport

Description

Shows the steps of teleporting a single qubit

Usage

teleport(v)

Arguments

v Ket (column vector) to teleport

Value

String describing teleportation process

Examples

teleport(ket(2,1))

52 testGate

tensor tensor

Description

Takes all arguments and combines them as a tensor product. Can be used to create a unified vec-
tor that represents multiple qubits or to create higher dimensional gates. If the inputs are two
n-dimensional kets, the output is a 2-n dimensional ket representing the combined system.

Usage

tensor(...)

Arguments

... kets (column vectosr) or gates (matrices) to take tensor product of

Value

The tensor product of all supplied arguments

Examples

tensor(ket(1,0),ket(0,1),ket(1,0),ket(1,0))
tensor(ket(1,1,1,1),ket(1,0,0,1))
tensor(X(),I())
tensor(H(),H(),H())

testGate testGate

Description

Takes a given quantum gate and tests it with computational basis states as input. Can test a subset
of possible inputs if specified, otherwise it tests all possible inputs. Useful for testing user defined
gates.

Usage

testGate(g,inputs=0:(dim(g)[1]-1))

Arguments

g Matrix that represents a quantum gate (operation)

inputs Vector of indices of computational basis states to test. Default is that all compu-
tational basis states will be tested

TOFFOLI 53

Value

None

Examples

testGate(CX())
testGate(CX(),inputs=c(0,1))

TOFFOLI TOFFOLI

Description

If no argument is supplied, returns the matrix of TOFFOLI gate. If ket given as input, applies a
TOFFOLI gate to the input ket and returns the resulting ket. If byCycle is TRUE, it generates the
cycles which implement the TOFFOLI gate with standard gates.

Usage

TOFFOLI(...,byCycle=FALSE,n=3,cQubits=c(0,1),tQubit=2)

Arguments

... No argument, or an 8 dimensional (3 qubit) ket (column vector) that is input to
the gate

byCycle Boolean specifying if the circuit should be generated. If TRUE, rather than
returning a matrix or performing a TOFFOLI gate, it returns a list of cycles of
standard gates which implements the TOFFOLI gate.

n Number of qubits in the system.

cQubits Vector of control qubit indices. Indexed from 0.

tQubit Index of target qubit. Indexed from 0.

Value

Matix of the TOFFOLI gate or ket after a TOFFOLI gate is applied. If byCycle is TRUE, a list of
cycles implementing the TOFFOLI.

Examples

TOFFOLI(ket(1,1,1,1,0,1,0,1))
TOFFOLI()

54 Uf

U U

Description

Takes as input a list of gates (in matrix form) and creates the tensor product, forming a higher
dimensional gate. If the last argument is a ket, the gate is applied to the ket and the ket returned. If
last argument is another gate, it returns the tensor product of all gates

Usage

U(...)

Arguments

... List of quantum gates in matrix form, optionally the last argument is ket (column
vector) that is input to the gate

Value

Matix of the gate that is the tensor product of all input gates, or the ket which is the result of the
gate applied to the input ket

Examples

U(X(),ket(1,0))
U(H(),H(),ket(1,0,0,0))
U(I(),X(),ket(1,0,1,0))
U(I(),X())

Uf Uf

Description

Generates an operator (oracle) of specified size that implements the function that is passed to it.
Assumes there are n qubits in data register and m qubits in target register.

Usage

Uf(fun,n,m)

unitary 55

Arguments

fun Function of an n-bit argument that produces an m-bit result

n Integer that specifies the number of qubits in the data register, same as number
of bits to function

m Integer that specifies the number of qubits in the target register, same as number
of bits as output of function

Value

Matrix of the operator (oracle) which implements the specified function)

Examples

Uf(function(x){x - floor(x/2)*2},1,1)
Uf(function(x){0},2,2)
Uf(function(x){1},2,2)
Uf(function(x){x - floor(x/4)*4},2,2)
Uf(function(x){x^3},3,4)

unitary unitary

Description

Determines whether an operation (matrix) is unitary by comparing its inverse to its adjoint

Usage

unitary(m,epsilon=1e-13)

Arguments

m gate operation (gate) that is to be checked

epsilon Amount of error to tolerate. Accounts for numerical precision on practical com-
puting systems

Value

boolean indicating whether matrix is unitary or not

Examples

unitary(mm(0,1,1,0))
unitary(mm(0,1,1,0),1e-15)

56 Y

X X

Description

If no argument is supplied, returns the matrix of X gate. If ket given as input, applies an X gate to
the input ket and returns the resulting ket

Usage

X(...)

Arguments

... No argument, or ket (column vector) that is input to the gate

Value

Matix of the X gate or ket after an X gate is applied

Examples

X(ket(1,0))
X()

Y Y

Description

If no argument is supplied, returns the matrix of the Y gate. If ket given as input, applies a Y gate
to the input ket and return the resulting ket

Usage

Y(...)

Arguments

... No argument, or ket (column vector) that is input to the gate

Value

Matrix of the Y gate or ket after a Y gate is applied

Examples

Y(ket(1,0))
Y()

Z 57

Z Z

Description

If no argument is supplied, returns the matrix of Z gate. If ket given as input, applies a Z gate to the
input ket and returns the resulting ket

Usage

Z(...)

Arguments

... No argument, or ket (column vector) that is input to the gate

Value

Matix of the Z gate or ket after a Z gate is applied

Examples

Z(ket(1,0))
Z()

Index

addmod2, 3
adjoint, 4
AmplitudeDamping, 5

BELL, 5
bra, 6

CFA, 6
checkCases, 7
cntrld, 7
CoherentNoise, 8
colv, 9
compareQuantumState, 9
controlled, 10
convert_bin2dec, 11
convert_dec2bin, 11
convert_ket2DM, 12
CX, 12
CY, 13
CZ, 13

DecomposeGate, 14
dirac, 15
dist, 15
dotmod2, 16

exponentialMod, 16
extractMNIST, 17

FullAdder, 18

G, 18
gcd, 19
GroverDiffusion, 20
GroverOracle, 20
GroversAlgorithm, 21

H, 22
hermitian, 22

I, 23

inner, 23
intket, 24

ket, 24

many, 25
measure, 26
mm, 26

nBitAddition, 27
norm, 28

opDM, 28

PauliNoise, 29
PauliOperators, 29
PhaseDamping, 30
plotprobs, 31
pp, 31
probs, 32

QAOA, 32
QAOA_example, 33
QAOA_maxcut, 34
QFT, 35
QuantumClassifier, 36
QuantumMNIST256Classifier, 38

R, 39
randomConnectionMatrix, 40
RandomizeCompile, 40
ranket, 41
reduceMeasure, 42
repeatTensor, 42
Rx, 43
Ry, 44
Rz, 44

S, 45
Shor, 45
single, 46

58

INDEX 59

singleSWAP, 47
Steane, 47
SteaneCorrect, 48
SWAP, 49
swapTest, 49
SynthesizeCircuit, 50

T, 51
teleport, 51
tensor, 52
testGate, 52
TOFFOLI, 53

U, 54
Uf, 54
unitary, 55

X, 56

Y, 56

Z, 57

	addmod2
	adjoint
	AmplitudeDamping
	BELL
	bra
	CFA
	checkCases
	cntrld
	CoherentNoise
	colv
	compareQuantumState
	controlled
	convert_bin2dec
	convert_dec2bin
	convert_ket2DM
	CX
	CY
	CZ
	DecomposeGate
	dirac
	dist
	dotmod2
	exponentialMod
	extractMNIST
	FullAdder
	G
	gcd
	GroverDiffusion
	GroverOracle
	GroversAlgorithm
	H
	hermitian
	I
	inner
	intket
	ket
	many
	measure
	mm
	nBitAddition
	norm
	opDM
	PauliNoise
	PauliOperators
	PhaseDamping
	plotprobs
	pp
	probs
	QAOA
	QAOA_example
	QAOA_maxcut
	QFT
	QuantumClassifier
	QuantumMNIST256Classifier
	R
	randomConnectionMatrix
	RandomizeCompile
	ranket
	reduceMeasure
	repeatTensor
	Rx
	Ry
	Rz
	S
	Shor
	single
	singleSWAP
	Steane
	SteaneCorrect
	SWAP
	swapTest
	SynthesizeCircuit
	T
	teleport
	tensor
	testGate
	TOFFOLI
	U
	Uf
	unitary
	X
	Y
	Z
	Index

